Abstract
Dendritic cells (DCs) are pivotal to initiating adaptive immune response. Emerging evidence highlights important roles of tuberous sclerosis complex 1 (Tsc1) in DC development and activation. Our previous study also showed that Tsc1 expression in DCs was required to promote T-cell homeostasis and response partially through inhibiting mammalian target of rapamycin complex1 (mTORC1). However, the molecular mechanism of transcriptional regulation by which Tsc1 control DC homeostasis and function remains largely unknown. Here we globally identified the Tsc1-regulated genes by comparing the transcriptional profiling of Tsc1-deficient DCs with wild-type DCs. It showed that Tsc1 specifically regulated the expression of groups of gene sets critically involved in DC survival, proliferation, metabolism and antigen presentation. The impacts of Tsc1 on DC gene expression were partially dependent on inhibition of mTORC1 signal. Our study thus provides a comprehensive molecular basis for understanding how Tsc1 programs the homeostasis and function of DCs through transcriptional regulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.