Abstract

Colony stimulating factor 1 receptor (CSF-1R) regulates the monocyte/macrophage system, which is an essential component of cancer development. Therefore, CSF-1R might be an effective target for anti-cancer therapy. The overexpression of transforming growth factor (TGF)-β stimulated clone-22 (TSC-22) inhibits cancer cell proliferation and induces apoptosis, and TSC-22 is emerging as a key factor in tumorigenesis. In this study, we discovered CSF-1R as a new interacting partner of TSC-22 and identified its elevated expression in cervical cancer cells. In particular, we found that TSC-22 interacted with the intracellular tyrosine kinase insert domain (539–749) of CSF-1R, which activates the AKT and ERK signaling pathways. This binding blocked AKT and ERK signaling, thereby suppressing the transcriptional activity of NF-κB. The overexpression of TSC-22 significantly decreased CSF-1R protein levels, affecting their autocrine loop. TSC-22 injected into a xenograft mouse model of human cervical cancer markedly inhibited tumor growth. The reduction of CSF-1R protein significantly suppresses cervical cancer cell proliferation and motility and induces apoptotic cell death. This association between TSC-22 and CSF-1R could be used as a novel therapeutic target and prognostic marker for cervical cancer.

Highlights

  • Transforming growth factor-β-stimulated clone-22 (TSC-22) was first isolated from mouse osteoblastic cells as a transforming growth factor (TGF)-β –inducible gene

  • Interaction between TSC-22 and Colony stimulating factor 1 receptor (CSF-1R) occurs in the cytoplasm

  • CSF-1R was selected as a TSC-22 binding protein

Read more

Summary

Introduction

Transforming growth factor-β-stimulated clone-22 (TSC-22) was first isolated from mouse osteoblastic cells as a TGF-β –inducible gene. TSC-22 is a member of the leucine zipper transcription factor family and consists of 144 amino acids. TSC-22 is broadly expressed in almost all human tissues and organs, including the brain, liver, kidney, lung, prostate, testis, and ovary [1, 2]. Several studies reported the loss of TSC-22 expression in cancer and emphasized the functional role of the tumor suppressor gene. Downregulation of TSC-22 led to cell differentiation [3]. TSC-22 expression inhibited cancer cell growth and promoted cellular apoptosis through the regulation of p53 ubiquitination [4]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.