Abstract

Deep learning has achieved significant success on intelligent medical treatments, such as automatic diagnosis and analysis of medical data. To train an automatic diagnosis system with high accuracy and strong robustness in healthcare, sufficient training data are required when using deep learning-based methods. However, given that the data collected by sensors that are embedded in medical or mobile devices are inadequate, it is challenging to train an effective and efficient classification model with state-of-the-art performance. Inspired by generative adversarial networks (GANs), we propose TS-GAN, a Time-series GAN architecture based on long short-term memory (LSTM) networks for sensor-based health data augmentation, thereby improving the performance of deep learning-based classification models. TS-GAN aims to learn a generative model that creates time-series data with the same space and time dependence as the real data. Specifically, we design an LSTM-based generator for creating realistic data and an LSTM-based discriminator for determining how similar the generated data are to real data. In particular, we design a sequential-squeeze-and-excitation module in the LSTM-based discriminator to better understand space dependence of real data, and apply the gradient penalty originated from Wasserstein GANs in the training process to stabilize the optimization. We conduct comparative experiments to evaluate the performance of TS-GAN with TimeGAN, C-RNN-GAN and Conditional Wasserstein GANs through discriminator loss, maximum mean discrepancy, visualization methods and classification accuracy on health datasets of ECG_200, NonInvasiveFatalECG_Thorax1, and mHealth, respectively. The experimental results show that TS-GAN exceeds other state-of-the-art time-series GANs in almost all the evaluation metrics, and the classifier trained on synthetic datasets generated by TS-GAN achieves the highest classification accuracy of 97.50% on ECG_200, 94.12% on NonInvasiveFatalECG_Thorax1, and 98.12% on mHealth, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.