Abstract
This paper proposes a new regression model, the Takagi–Sugeno Fuzzy System-based Support Vector Regression (TSFS-SVR). The TSFS-SVR is motivated by TS-type fuzzy rules and its parameters are learned by a combination of fuzzy clustering and linear SVR. In contrast to a kernel-based SVR, the TSFS-SVR has a smaller number of parameters while retaining the SVR's good generalization ability. In TSFS-SVR, a one-pass clustering algorithm clusters the input training data. A new TS-kernel, which corresponds to a TS-type fuzzy rule, is then constructed by the product of a cluster output and a linear combination of input variables. The TSFS-SVR output is a linear weighted sum of the TS-kernels. To achieve high generalization ability, TSFS-SVR weights are learned through linear SVR. This paper demonstrates the capabilities of TSFS-SVR by conducting simulations in clean and noisy function approximations and signal prediction. This paper also compares simulation results from the TSFS-SVR with Gaussian kernel-based SVR and other learning models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.