Abstract
Speech enhancement based on deep neural networks faces difficulties, as modeling more frequency bands can lead to a decrease in the resolution of low-frequency bands and increase the computational complexity. Previously, we proposed a convolution-augmented gated attention unit (CGAU), which captured local and global correlation in speech signals through the fusion of the convolution and gated attention unit. In this paper, we further improved the CGAU, and proposed a two-stage complex and real dual-path sub-band fusion network for full-band speech enhancement called TS-CGANet. Specifically, we proposed a dual-path CGA network to enhance low-band (0–8 kHz) speech signals. In the medium band (8–16 kHz) and high band (16–24 kHz), noise suppression is only performed in the magnitude domain. The Voice Bank+DEMAND dataset was used to conduct experiments on the proposed TS-CGANet, which consistently outperformed state-of-the-art full-band baselines, as evidenced by the results.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.