Abstract

There are indications that serotonergic neurotransmission is disturbed in several psychiatric disorders. One explanation may be disturbed transport of tryptophan (precursor for serotonin synthesis) across cell membranes. Human fibroblast cells offer an advantageous model to study the transport of amino acids across cell membranes, since they are easy to propagate and the environmental factors can be controlled. The aim of this study was to functionally characterize tryptophan transport and to identify the main transporters of tryptophan in fibroblast cell lines from healthy controls.Tryptophan kinetic parameters (Vmax and Km) at low and high concentrations were measured in fibroblasts using the cluster tray method. Uptake of 3H (5)-L-tryptophan at different concentrations in the presence and absence of excess concentrations of inhibitors or combinations of inhibitors of amino acid transporters were also measured. Tryptophan transport at high concentration (0.5 mM) had low affinity and high Vmax and the LAT1 isoform of system-L was responsible for approximately 40% of the total uptake of tryptophan. In comparison, tryptophan transport at low concentration (50 nM) had higher affinity, lower Vmax and approximately 80% of tryptophan uptake was transported by system-L with LAT1 as the major isoform. The uptake of tryptophan at the low concentration was mainly sodium (Na+) dependent, while uptake at high substrate concentration was mainly Na+ independent. A series of different transporter inhibitors had varying inhibitory effects on tryptophan uptake.This study indicates that tryptophan is transported by multiple transporters that are active at different substrate concentrations in human fibroblast cells. The tryptophan transport trough system-L was mainly facilitated by the LAT1 isoform, at both low and high substrate concentrations of tryptophan.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.