Abstract

Novel tryptophan substitutions, surrounding the nucleotide bound in catalytic sites, were introduced into Escherichia coli F1-ATPase. The mutant enzymes were purified and studied by fluorescence spectroscopy. One cluster of Trp substitutions, consisting of beta-Trp-404, beta-Trp-410, beta-Asp-158 (lining the adenine-binding pocket), and beta-Trp-153 (close to the alpha/beta-phosphates), showed the same fluorescence responses to MgADP, MgAMPPNP, and MgATP and the same nucleotide binding pattern with MgADP and MgAMPPNP, with one site of higher and two sites of lower affinity. Therefore, in absence of catalytic turnover (and of gamma-subunit rotation), sites 2 and 3 appeared similar in affinity, and the region of the catalytic site sensed by these Trp substitutions did not change conformation with different nucleotides. In contrast, alpha-Trp-291 and beta-Trp-297, both close to the gamma-phosphate, showed very different fluorescence responses to MgADP versus MgAMPPNP, and in these cases the response was due exclusively or predominantly to nucleotide binding at the first, high-affinity catalytic site, thus allowing specific detection of this site. Titration with MgATP showed that the high-affinity site was present under conditions of steady-state, Vmax MgATP hydrolysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.