Abstract

Recently, 5 amino acids were identified and verified as important metabolites highly associated with type 2 diabetes (T2D) development. This report aims to assess the association of tryptophan with the development of T2D and to evaluate its performance with existing amino acid markers. A total of 213 participants selected from a ten-year longitudinal Shanghai Diabetes Study (SHDS) were examined in two ways: 1) 51 subjects who developed diabetes and 162 individuals who remained metabolically healthy in 10 years; 2) the same 51 future diabetes and 23 strictly matched ones selected from the 162 healthy individuals. Baseline fasting serum tryptophan concentrations were quantitatively measured using ultra-performance liquid chromatography triple quadruple mass spectrometry. First, serum tryptophan level was found significantly higher in future T2D and was positively and independently associated with diabetes onset risk. Patients with higher tryptophan level tended to present higher degree of insulin resistance and secretion, triglyceride and blood pressure. Second, the prediction potential of tryptophan is non-inferior to the 5 existing amino acids. The predictive performance of the combined score improved after taking tryptophan into account. Our findings unveiled the potential of tryptophan as a new marker associated with diabetes risk in Chinese populations. The addition of tryptophan provided complementary value to the existing amino acid predictors.

Highlights

  • Type 2 diabetes (T2D) is estimated to affect over 550 million people worldwide by 2030 [1]

  • We noticed that the glucose, insulin, and blood pressure levels were higher in T2D group, compared to NGT group

  • Logistic regression models, using all and matched subjects, were fitted and further confirmed that tryptophan was positively associated with diabetes risk and independent of both physical and metabolic markers including age, gender, BMI, fasting and 2 h postprandial glucose, fasting and 2 h postprandial insulin, and HOMA-IR (p trend < 0.001 for both; odds ratio of all participants = 2.54 (95%confidence interval (CI): 1.85, 3.48); odds ratio of matched subjects = 5.06 (95%CI: 2.31, 11.10))

Read more

Summary

Introduction

Type 2 diabetes (T2D) is estimated to affect over 550 million people worldwide by 2030 [1]. T2D will further increase the risk of developing hypertension, cardiovascular disease, coronary heart disease, stroke, and several types of cancers. When T2D and/or any of the consequent metabolic diseases are diagnosed, the pathophysiological status would be extremely difficult to reverse. The identification of future type 2 diabetes is crucial for disease prevention and early intervention.

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call