Abstract

It has been reported that different amino acid radicals are formed following the addition of hydrogen peroxide to cytochrome c oxidase (C cO) from bovine heart or from Paracoccus denitrificans. A broad unresolved signal in the electron paramagnetic resonance (EPR) spectra of bovine C cO has been assigned to a tryptophan radical, probably Trp126 [Rigby et al. Biochemistry 2000, 39, 5921–5928]. In the P. denitrificans enzyme, a similarly broad signal but with a well-resolved hyperfine structure was shown to originate from a tyrosyl radical and was tentatively assigned to the active site Tyr280 [MacMillan et al. Biochemistry 1999, 38, 9179–9184]. We confirm that the EPR signal from P. denitrificans C cO can be simulated using spectral parameters typical for known Tyr radicals in other systems. However, the rotational conformation of the phenolic ring of Tyr280 is inconsistent with our simulation. Instead, the simulation parameters we used correspond to the rotational conformation of ring that matches very accurately the conformation found in Tyr167, a residue that is close enough (∼10 Å) to the binuclear centre to readily donate an electron. The broad unresolved EPR signal in the bovine oxidase has been thought previously to be inconsistent with a tyrosyl radical. However, we have simulated a hypothetical EPR spectrum arising from a Tyr129 radical (the equivalent of Tyr167 in P. denitrificans C cO) and showed that it is similar to the observed broad signal. The possibility exists, therefore, that the homological tyrosine amino acid (Tyr167/Tyr129) is responsible for the EPR spectrum in both the Paraccoccus and the bovine enzyme. This correspondence between the two enzymes at least allows the possibility that this radical may have functional importance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.