Abstract
Isatin (indole-2,3-dione) is an endogenous regulator, exhibiting various behavioral, biological, and pharmacological activities. Synthesis of isatin includes several crucial stages: cleavage of the tryptophan side chain and subsequent oxidation of the indole nucleus. Although these stages require concerted action of bacterial and host enzymes, there are two pathways of isatin formation: the host and bacterial pathways. Isatin acts as a neuroprotector in different experimental models of neurodegeneration. Its effects are realized via up- and downregulation of isatin-responsive genes and via interaction with numerous isatin-binding proteins identified in the brain. The effect of isatin on protein-protein interactions in the brain may be important for realization of weak inhibition of multiple receptor targets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.