Abstract

BackgroundPseudomonas aeruginosa (Pa) is a Gram-negative bacteria frequently involved in healthcare-associated pneumonia with poor clinical outcome. To face the announced post-antibiotic era due to increasing resistance and lack of new antibiotics, new treatment strategies have to be developed. Immunomodulation of the host response involved in outcome could be an alternative therapeutic target in Pa-induced lung infection. Kynurenines are metabolites resulting from tryptophan catabolism and are known for their immunomodulatory properties. Pa catabolizes tryptophan through the kynurenine pathway. Interestingly, many host cells also possess the kynurenine pathway, whose metabolites are known to control immune system homeostasis. Thus, bacterial metabolites may interfere with the host’s immune response. However, the kynurenine pathway in Pa, including functional enzymes, types and amounts of secreted metabolites remains poorly known. Using liquid chromatography coupled to mass spectrometry and different strains of Pa, we determined types and levels of metabolites produced by Pa ex vivo in growth medium, and the relevance of this production in vivo in a murine model of acute lung injury.ResultsEx vivo, Pa secretes clinically relevant kynurenine levels (μM to mM). Pa also secretes kynurenic acid and 3-OH-kynurenine, suggesting that the bacteria possess both a functional kynurenine aminotransferase and kynurenine monooxygenase. The bacterial kynurenine pathway is the major pathway leading to anthranilate production both ex vivo and in vivo. In the absence of the anthranilate pathway, the kynurenine pathway leads to kynurenic acid production.ConclusionPa produces and secretes several metabolites of the kynurenine pathway. Here, we demonstrate the existence of new metabolic pathways leading to synthesis of bioactive molecules, kynurenic acid and 3-OH-kynurenine in Pa. The kynurenine pathway in Pa is critical to produce anthranilate, a crucial precursor of some Pa virulence factors. Metabolites (anthranilate, kynurenine, kynurenic acid) are produced at sustained levels both ex vivo and in vivo leading to a possible immunomodulatory interplay between bacteria and host. These data may imply that pulmonary infection with bacteria highly expressing the kynurenine pathway enzymes could influence the equilibrium of the host’s tryptophan metabolic pathway, known to be involved in the immune response to infection. Further studies are needed to explore the effects of these metabolic changes on the pathophysiology of Pa infection.Electronic supplementary materialThe online version of this article (doi:10.1186/s12866-016-0756-x) contains supplementary material, which is available to authorized users.

Highlights

  • Pseudomonas aeruginosa (Pa) is a Gram-negative bacteria frequently involved in healthcare-associated pneumonia with poor clinical outcome

  • The kynurenine pathway in Pa produces high-level anthranilate ex vivo To explore the ability of Pa to produce anthranilate, we assessed concentrations of tryptophan, kynurenine and

  • We show that Pa is able to produce anthranilate ex vivo from 4 h of culture and anthranilate accumulates until 100 μM concentration after 24 h of culture for a bacterial count of 2.109 CFU/ml (Fig. 2)

Read more

Summary

Introduction

Pseudomonas aeruginosa (Pa) is a Gram-negative bacteria frequently involved in healthcare-associated pneumonia with poor clinical outcome. Using liquid chromatography coupled to mass spectrometry and different strains of Pa, we determined types and levels of metabolites produced by Pa ex vivo in growth medium, and the relevance of this production in vivo in a murine model of acute lung injury. The three known enzymes composing the kynurenine pathway in Pa are tryptophan-2,3-dioxygenase (encoded by kynA), kynurenine formamidase (encoded by kynB), and kynureninase (encoded by kynU), leading respectively to formylkynurenine, kynurenine and anthranilate production (Fig. 1) [4, 10]. The following experiments aim to determine tryptophan metabolites and their production levels ex vivo during Pa growth in rich medium using wild type strain CHA, and ΔkynA or ΔkynU deletion mutants. We assessed kynurenine pathway metabolites production in vivo in a murine model of acute lung injury

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.