Abstract
Hyperresponsiveness of airway smooth muscle to allergens and environmental factors has long been associated with the pathophysiology of asthma. Tryptase, a serine protease of lung mast cells, has been implicated as one of the mediators involved in the induction of hyperresponsiveness. As a consequence, tryptase inhibitors have become the subject of study as potential novel therapeutic agents for asthma. Secretory leukocyte protease inhibitor (SLPI) is a naturally occurring protein of human airways which exhibits anti-tryptase activity. To assess the potential therapeutic utility of SLPI in asthma, its effects were evaluated using in vitro and ex vivo models of airway hyperresponsiveness and compared with the effects of the small molecule tryptase inhibitor APC-366. Our results demonstrate that SLPI inhibits tryptase-mediated hyperresponsiveness in vitro and attenuates the hyperresponsiveness observed in airway smooth muscle from antigen-sensitized animals subjected to antigen exposure. The small molecule tryptase inhibitor APC-366 has a similar inhibitory effect. Thus, tryptase appears to be a significant contributor to the development of hyperresponsiveness in these models. To the extent that tryptase contributes to the development and progression of asthma, SLPI may posses therapeutic potential in this disease setting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.