Abstract

Rat bone marrow cultures containing 1α,25-dihydroxyvitamin D 3 [1α,25(OH) 2D 3] formed multinucleated cells (MNCs) that had many characteristics of osteoclasts. These MNCs, which have a tartrate-resistant acid phosphatase (TRAP) activity, could be classified into two morphological types: one type had smooth cellular margins (smooth-margined MNCs) and the other type had irregular spike-like margins (stellate MNCs). When bone marrow cells depleted of authentic osteoclasts were seeded and cultured on dentine slices, only low numbers of resorption lacunae could be detected. However, when preformed MNCs were detached by trypsinization and replated on dentine slices, numerous resorption lacunae were observed by scanning electron microscopy on these slices. Formation of lacunae occurred reproducibly during the five to ten days of culture. We also examined the effect of retinoic acid on TRAP-positive MNC formation in this bone marrow culture system. Although RA inhibited total TRAP-positive MNC formation, it increased the ratio of stellate MNCs to smooth-margined MNC, suggesting that RA may have the ability to regulate the formation of active osteoclasts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.