Abstract

2S-albumins Ara h 2 and Ara h 6 are the most widely recognized and potent allergens for peanut-allergic patients. These allergens are particularly resistant to proteolysis and the digestion products generally retain significant allergenicity. Five disulfide bridges (DB) stabilize Ara h 6 overall structure and their influence on the trypsin resistance and on the allergenicity of the digestion products was investigated. Progressive disruption of each DB was performed by site-directed mutagenesis. Successful refolding of Ara h 6 variants was confirmed by circular dichroism. Trypsin resistance, IgE-binding capacity and allergenic potency, as assessed by in vitro mediator release assay with sera from peanut-allergic patients, was not affected by the deletion of the C-terminal DB at Cys(84) -Cys(124) . Additional disruption of DB at Cys(14) -Cys(71) or at Cys(73) -Cys(115) rendered Arg(16/20) or Arg(114) susceptible to trypsinolysis, respectively, but affected principally the IgE-binding capacity of Ara h 6. DB disruption at Cys(26) -Cys(58) or at Cys(59) -Cys(107) led to an extensive proteolytic degradation and a complete loss of allergenic potency of the digestion products. Selective disruption of the DB stabilizing the protease-resistant core of Ara h 6 eliminated the IgE-binding capacity of the trypsin-degradation products and their ability to trigger mast cell degranulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.