Abstract

ABSTRACTFast-growing bamboo may be a source of high-quality cellulose with the potential to contribute to energy sustainability, if an efficient and low-cost solution to bamboo cellulose decomposition can be developed. This study compared the gut microbiomes of rhinoceros beetle (Trypoxylus dichotomus) feeding on bamboo and wood fiber. The results revealed that diet has a distinctive effect on microbial composition in the midgut, including its most abundant microorganisms that in the fermentation and chemoheterotroph pathways. After identifying the 13 efficient bacterial isolates, we constructed a natural bacterial system based on the microbial relative abundance and an artificial bacterial system with equal proportions of each isolate to catabolize bamboo lignocellulose. The isolate Enterobacter sp. AZA_4_5 and the natural system showed higher degradation efficiency than other single strains or the artificial system. The results can thus serve as important reference for further research and development of a synthetic bacterial consortium to maximize lignocellulolytic ability.IMPORTANCE Bamboo produces a great yield of lignocellulosic biomass due to its high efficiency in carbon fixing. The gut microbiome of Trypoxylus dichotomus differed between bamboo and wood fiber diets. The lignocellulosic pathways were enriched in the gut bacteria of the bamboo diet. The highly efficient bacterial isolates were identified from midgut, whereas the natural bacterial system as well as one isolate showed the higher degradation efficiency of bamboo lignocellulose. The results indicate that the gut bacteria could provide an effective system to utilize the bamboo lignocellulosic biomass.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.