Abstract

Blood is a remarkable habitat: it is highly viscous, contains a dense packaging of cells and perpetually flows at velocities varying over three orders of magnitude. Only few pathogens endure the harsh physical conditions within the vertebrate bloodstream and prosper despite being constantly attacked by host antibodies. African trypanosomes are strictly extracellular blood parasites, which evade the immune response through a system of antigenic variation and incessant motility. How the flagellates actually swim in blood remains to be elucidated. Here, we show that the mode and dynamics of trypanosome locomotion are a trait of life within a crowded environment. Using high-speed fluorescence microscopy and ordered micro-pillar arrays we show that the parasites mode of motility is adapted to the density of cells in blood. Trypanosomes are pulled forward by the planar beat of the single flagellum. Hydrodynamic flow across the asymmetrically shaped cell body translates into its rotational movement. Importantly, the presence of particles with the shape, size and spacing of blood cells is required and sufficient for trypanosomes to reach maximum forward velocity. If the density of obstacles, however, is further increased to resemble collagen networks or tissue spaces, the parasites reverse their flagellar beat and consequently swim backwards, in this way avoiding getting trapped. In the absence of obstacles, this flagellar beat reversal occurs randomly resulting in irregular waveforms and apparent cell tumbling. Thus, the swimming behavior of trypanosomes is a surprising example of micro-adaptation to life at low Reynolds numbers. For a precise physical interpretation, we compare our high-resolution microscopic data to results from a simulation technique that combines the method of multi-particle collision dynamics with a triangulated surface model. The simulation produces a rotating cell body and a helical swimming path, providing a functioning simulation method for a microorganism with a complex swimming strategy.

Highlights

  • Blood vessels form a dense network throughout the human body with a total length of about 100,000 kilometers

  • We found that the pathogens can readily adjust the beating direction of their single flagellum in response to purely mechanical cues

  • In the blood they exploit the spacing and shape of blood cells for very efficient forward movement that is required for host antibody clearance

Read more

Summary

Introduction

Blood vessels form a dense network throughout the human body with a total length of about 100,000 kilometers. The vessels diameter ranges from a few micrometers in capillaries to centimeters in the aorta and veins. Blood contains about 45% (v/v) cellular components, which flow with velocities ranging from mm s21 in capillaries to m s21 in the aorta. In small capillaries, red blood cells (RBC) move in a single row, while in larger vessels they are thought to accumulate in the channel center due to hydrodynamic flow effects. Despite these fundamental characteristics, blood composition, temperature, pressure and oxygen content differ significantly between vertebrate species. The parasitic unicellular trypanosomes prosper in the circulation of all vertebrate classes, from fish to bird. The parasites have evolved by adapting to very different bloodstream conditions

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call