Abstract
Innate immunity is the first line of defense against invading microorganisms. Trypanosome Lytic Factor (TLF) is a minor sub-fraction of human high-density lipoprotein that provides innate immunity by completely protecting humans from infection by most species of African trypanosomes, which belong to the Kinetoplastida order. Herein, we demonstrate the broader protective effects of human TLF, which inhibits intracellular infection by Leishmania, a kinetoplastid that replicates in phagolysosomes of macrophages. We show that TLF accumulates within the parasitophorous vacuole of macrophages in vitro and reduces the number of Leishmania metacyclic promastigotes, but not amastigotes. We do not detect any activation of the macrophages by TLF in the presence or absence of Leishmania, and therefore propose that TLF directly damages the parasite in the acidic parasitophorous vacuole. To investigate the physiological relevance of this observation, we have reconstituted lytic activity in vivo by generating mice that express the two main protein components of TLFs: human apolipoprotein L-I and haptoglobin-related protein. Both proteins are expressed in mice at levels equivalent to those found in humans and circulate within high-density lipoproteins. We find that TLF mice can ameliorate an infection with Leishmania by significantly reducing the pathogen burden. In contrast, TLF mice were not protected against infection by the kinetoplastid Trypanosoma cruzi, which infects many cell types and transiently passes through a phagolysosome. We conclude that TLF not only determines species specificity for African trypanosomes, but can also ameliorate an infection with Leishmania, while having no effect on T. cruzi. We propose that TLFs are a component of the innate immune system that can limit infections by their ability to selectively damage pathogens in phagolysosomes within the reticuloendothelial system.
Highlights
Human blood is a potentially hostile environment to colonizing pathogens due in part to effectors of innate immunity
We show that a minor subfraction of human high-density lipoprotein, known as Trypanosome Lytic Factor (TLF), kills the parasite Trypanosoma brucei, but is a more broadly acting antimicrobial component of the innate immune system in humans
As TLF is activated under acidic conditions, we evaluated the activity of TLF against the intracellular parasite Leishmania, which infects and grows within acidic compartments of macrophages, cells in our blood that normally destroy invading microorganisms
Summary
Human blood is a potentially hostile environment to colonizing pathogens due in part to effectors of innate immunity. Trypanosome Lytic Factors (TLFs) are a subset of high-density lipoproteins (HDLs) that protect against infection by many but not all species of the African trypanosome. Two TLFs have been characterized in human blood: TLF1 and TLF2. TLF1 is a large (500 kDa) lipid rich HDL composed predominantly of apolipoprotein A-I (apoAI), haptoglobin-related protein (Hpr), and apolipoprotein L-I (apoL-I) [1,2]. TLF2 is a 1000 kDa lipid-poor HDL, which is an immunocomplex composed of apoA-I, Hpr, apoL-I, and IgM [1,3]. Hpr and apoL-I are the two unique protein components of TLFs that are required to give optimal trypanolytic activity
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.