Abstract

Tsetse flies (Glossina spp.) vector pathogenic African trypanosomes, which cause sleeping sickness in humans and nagana in domesticated animals. Additionally, tsetse harbors 3 maternally transmitted endosymbiotic bacteria that modulate their host's physiology. Tsetse is highly resistant to infection with trypanosomes, and this phenotype depends on multiple physiological factors at the time of challenge. These factors include host age, density of maternally-derived trypanolytic effector molecules present in the gut, and symbiont status during development. In this study, we investigated the molecular mechanisms that result in tsetse's resistance to trypanosomes. We found that following parasite challenge, young susceptible tsetse present a highly attenuated immune response. In contrast, mature refractory flies express higher levels of genes associated with humoral (attacin and pgrp-lb) and epithelial (inducible nitric oxide synthase and dual oxidase) immunity. Additionally, we discovered that tsetse must harbor its endogenous microbiome during intrauterine larval development in order to present a parasite refractory phenotype during adulthood. Interestingly, mature aposymbiotic flies (Gmm Apo) present a strong immune response earlier in the infection process than do WT flies that harbor symbiotic bacteria throughout their entire lifecycle. However, this early response fails to confer significant resistance to trypanosomes. Gmm Apo adults present a structurally compromised peritrophic matrix (PM), which lines the fly midgut and serves as a physical barrier that separates luminal contents from immune responsive epithelial cells. We propose that the early immune response we observe in Gmm Apo flies following parasite challenge results from the premature exposure of gut epithelia to parasite-derived immunogens in the absence of a robust PM. Thus, tsetse's PM appears to regulate the timing of host immune induction following parasite challenge. Our results document a novel finding, which is the existence of a positive correlation between tsetse's larval microbiome and the integrity of the emerging adult PM gut immune barrier.

Highlights

  • Tsetse flies (Glossina spp.) serve as the sole vector of protozoan African trypanosomes (Trypanosoma brucei spp.), which are the causative agents of Human African trypanosomiasis (HAT), or sleeping sickness, throughout most of sub-Saharan Africa

  • Previous studies suggest that host age and microbiome status modulate the ability of insect disease vectors to transmit mammalian pathogens [7,17,20,21]

  • Previous studies have demonstrated that adult tsetse newly eclosed from their pupal case are highly susceptible to infection with trypanosomes [6,7]

Read more

Summary

Introduction

Tsetse flies (Glossina spp.) serve as the sole vector of protozoan African trypanosomes (Trypanosoma brucei spp.), which are the causative agents of Human African trypanosomiasis (HAT), or sleeping sickness, throughout most of sub-Saharan Africa. Parasites from this same species complex infect domesticated animals, causing an economically devastating disease called nagana. Stumpy form mammalian trypanosomes differentiate to become procyclics [1,2] At this point most tsetse hosts can efficiently clear their infections [3]. Even under ideal laboratory-based conditions, only a small proportion of adult flies are able to transmit parasites to a naıve host [4,5]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.