Abstract

Importin α, a transport factor in the classical pathway of nuclear transport of proteins in eukaryotes, has not been experimentally studied in trypanosomatids. A chimeric fluorescent version of this protein (TcImportin α-EGFP) expressed in transfected epimastigotes of Trypanosoma cruzi is characterized here. Initially, the cellular localization of the tagged protein was analysed in exponentially growing and non-growing quiescent cells in a stationary phase. In growing epimastigotes, the fluorescence signal appeared to be mostly localized in the nucleolus, with additional minor fluorescent dots observed close to the nuclear periphery. In the stationary phase, both aged epimastigotes and metacyclic trypomastigotes presented with dispersed fluorescence of a granular form within the nucleoplasm of the cells that predominantly localized in poorly DAPI-stained regions. On the other hand, the ability of a tagged (6×His) version of TcImportin α to bind the nuclear protein cargo TcRPA31 (TcRPA31-EGFP) was determined by pull-down assays of co-transfected cultures. In addition, the results from the in vitro analyses with these tagged recombinant proteins showed that the functional nuclear localization signal (NLS) previously mapped to TcRPA31 was sufficient to sustain binding to TcImportin α. Moreover, the second cluster of basic amino acids within this bipartite NLS (formerly termed element B) was found to be essential for complex formation, as previously described for the nuclear translocation of these fluorescent chimeras. To our knowledge, this approach is the first in which Importin α was experimentally researched in kinetoplastids. The ability of TcImportin α to bind the NLS motif analysed here, is an essential feature expected for its potential functional role as a soluble transport factor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call