Abstract

Human infection with Trypanosoma brucei may result in meningo-encephalitis, neuronal demyelination, blood-brain-barrier dysfunction, peri-vascular infiltration, astrocytosis and neuronal apoptosis. Prevention of the short- or long-term, parasite-induced, neuronal assault requires a better understanding of the host's responses to the infection at the molecular level. Northern analysis, cDNA micro-arrays, reverse-transcrip-tase-PCR (RT-PCR), SDS-PAGE and immunohistology were therefore used to investigate global gene and protein expression in the brains of mice infected with T. brucei. Temporal and spatial expression of neuroleukin (NLK), a predominant neurotrophin which is associated with neuronal protection and regeneration during neuronal assault in the brain, was then assessed. Expression of 20 of the 588 genes investigated (representing pro- and anti-inflammatory immuno-modulators, growth factors, neurotransmitters, and pro- and anti-apoptosis factors) was significantly altered (P < 0.05). TUNEL analysis revealed extensive apoptosis at peak parasitaemia, mainly in the cerebellum. RT-PCR analysis of two regulators of apoptosis, Bcl-x(L) (anti-apoptotic) and Bax (pro-apoptotic), revealed equivalent increases in levels of expression. NLK expression was up-regulated in punctated fashion in brain and was mainly localized to abnormal (stellate) catecholamine neurons (CN) in the locus coeruleus (LC) of infected [and, to a lesser degree, the normal (polygonal) cells of uninfected] brainstem. Expression of NLK receptor (NLK-R) was inversely correlated with that of NLK. At peak parasitaemia, trypanosome infection apparently induces cerebellar apoptosis and a corresponding increase in NLK expression. NLK may be modulating inflammation and is probably involved in protecting CN and the cerebellum against apoptosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call