Abstract

BackgroundThe timing of Trypanosoma brucei entry into the brain parenchyma to initiate the second, meningoencephalitic stage of human African trypanosomiasis or sleeping sickness is currently debated and even parasite invasion of the neuropil has been recently questioned. Furthermore, the relationship between neurological features and disease stage are unclear, despite the important diagnostic and therapeutic implications.MethodologyUsing a rat model of chronic Trypanosoma brucei brucei infection we determined the timing of parasite and T-cell neuropil infiltration and its correlation with functional changes. Parasite DNA was detected using trypanosome-specific PCR. Body weight and sleep structure alterations represented by sleep-onset rapid eye movement (SOREM) periods, reported in human and experimental African trypanosomiasis, were monitored. The presence of parasites, as well as CD4+ and CD8+ T-cells in the neuropil was assessed over time in the brain of the same animals by immunocytochemistry and quantitative analyses.Principal findingsTrypanosome DNA was present in the brain at day 6 post-infection and increased more than 15-fold by day 21. Parasites and T-cells were observed in the parenchyma from day 9 onwards. Parasites traversing blood vessel walls were observed in the hypothalamus and other brain regions. Body weight gain was reduced from day 7 onwards. SOREM episodes started in most cases early after infection, with an increase in number and duration after parasite neuroinvasion.ConclusionThese findings demonstrate invasion of the neuropil over time, after an initial interval, by parasites and lymphocytes crossing the blood-brain barrier, and show that neurological features can precede this event. The data thus challenge the current clinical and cerebrospinal fluid criteria of disease staging.

Highlights

  • Started in most cases early after infection, with an increase in number and duration after parasite neuroinvasion. These findings demonstrate invasion of the neuropil over time, after an initial interval, by parasites and lymphocytes crossing the blood-brain barrier, and show that neurological features can precede this event

  • We studied for the first time functional signs together with the presence of parasites and lymphocytes in the neuropil

  • Human African trypanosomiasis (HAT) or sleeping sickness is a severe neglected tropical disease caused by the protozoan parasites Trypanosoma brucei (T. b.), spread by tsetse fly vectors

Read more

Summary

Introduction

Human African trypanosomiasis (HAT) or sleeping sickness is a severe neglected tropical disease caused by the protozoan parasites Trypanosoma brucei (T. b.), spread by tsetse fly vectors (genus Glossina). After a peak of infection in the 1990s, the incidence of HAT has considerably declined in recent years [1]. It is estimated, that a significant number of new cases remain unreported or undiagnosed [3,4,5]. The timing of Trypanosoma brucei entry into the brain parenchyma to initiate the second, meningoencephalitic stage of human African trypanosomiasis or sleeping sickness is currently debated and even parasite invasion of the neuropil has been recently questioned. The relationship between neurological features and disease stage are unclear, despite the important diagnostic and therapeutic implications

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call