Abstract

Speakers of languages with synchronically productive compounding systems, such as English, are likely to encounter new compounds on a daily basis. These can only be useful for communication if speakers are able to rapidly compose their meanings. However, while compositional meanings can be obtained for some novel compounds such as bridgemill, this is far harder for others such as radiosauce; accordingly, processing speed should be affected by the ease of such a compositional process. To rigorously test this hypothesis, we employed a fully implemented computational model based on distributional semantics to quantitatively measure the degree of semantic compositionality of novel compounds. In two large-scale studies, we collected timed sensibility judgements and lexical decisions for hundreds of morphologically structured nonwords in English. Response times were predicted by the constituents' semantic contribution to the compositional process, with slower rejections for more compositional nonwords. We found no indication of a difference in these compositional effects between the tasks, suggesting that speakers automatically engage in a compositional process whenever they encounter morphologically structured stimuli, even when it is not required by the task at hand. Such compositional effects in the processing of novel compounds have important implications for studies that employ such stimuli as filler material or "nonwords," as response times for these items can differ greatly depending on their compositionality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.