Abstract
In a non-competitive environment, sporadic real-time task scheduling on a single processor is well understood. In this paper, we consider a competitive environment comprising several real-time tasks vying for execution upon a shared single processor. Each task obtains a value if the processor successfully schedules all its jobs. Our objective is to select a feasible subset of these tasks to maximize the sum of values of selected tasks. We consider both dynamic-priority and static-priority scheduling algorithms. There are algorithms for solving these problems in non-competitive settings. However, we consider these problems in an economic setting in which each task is owned by a selfish agent. Each agent reports the characteristics of her own task to the processor owner. The processor owner uses a mechanism to allocate the processor to a subset of agents and to determine the payment of each agent. Since agents are selfish, they may try to manipulate the mechanism to obtain the processor. We are interested in truthful mechanisms in which it is always in agents’ best interest to report the true characteristics of their tasks. We design exact and approximate truthful mechanisms for this competitive environment and study their performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.