Abstract
There are two different ways to introduce the notion of truthin constructive mathematics. The first one is to use a Tarskian definition of truth in aconstructive (meta)language. According to some authors, (Kreisel, van Dalen, Troelstra ... ),this definition is entirely similar to the Tarskian definition of classical truth (thesis A).The second one, due essentially to Heyting and Kolmogorov, and known as theBrouwer–Heyting–Kolmogorov interpretation, is to explain informally what it means fora mathematical proposition to be constructively proved. According to other authors (Martin-Lofand Shapiro), this interpretation and the Tarskian definition of truth amount to thesame (thesis B). My aim in this paper is to show that thesis A is only reasonable, that thesis Bis false and to answer the following question: what is defined by the Tarskian definition ofconstructive truth?
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.