Abstract
The principles of security, privacy, accountability, transparency, and fairness are the cornerstones of modern AI regulations. Classic FL was designed with a strong emphasis on security and privacy, at the cost of transparency and accountability. CFL addresses this gap with a careful combination of FL with TEEs and commitments. In addition, CFL brings other desirable security properties, such as code-based access control, model confidentiality, and protection of models during inference. Recent advances in confidential computing such as confidential containers and confidential GPUs mean that existing FL frameworks can be extended seamlessly to support CFL with low overheads. For these reasons, CFL is likely to become the default mode for deploying FL workloads.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.