Abstract

Social networks can provide massive amounts of information for communication among users and communities. The trust relationships in social networks can be utilized to reveal user preferences for improving the quality of social recommendation, which aims to mitigate information overload and provide users with the most attractive and relevant items or services. However, the data sparsity and cold-start issue degrade recommendation performance significantly. To address these issues, a novel trust-embedded collaborative deep generative model (TCDG) is proposed for exploiting multisource information (content, rating and trust) to predict ratings. TCDG employs deep generative model to unsupervisedly learn deep latent representations for item content through an inference network in latent space instead of observation space. Meanwhile, TCDG adopts probabilistic matrix factorization to map users into low-dimensional latent feature spaces by trust relationships, which can reflect users’ mutual influence on the formation of users’ opinions more accurately and learn better implicit relationships between items and users from content, rating and trust. In addition, an approach with an annealing parameter to calculate the maximum a posteriori estimates is proposed to learn model parameters. Experiments using four real-world datasets are conducted to evaluate the prediction and top-ranking performance of our model. The results indicate that TDCG has better accuracy and robustness than other methods for making recommendations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.