Abstract

Active learning can be defined as iterations of data labeling, model training, and data acquisition, until sufficient labels are acquired. A traditional view of data acquisition is that, through iterations, knowledge from human labels and models is implicitly distilled to monotonically increase the accuracy and label consistency. Under this assumption, the most recently trained model is a good surrogate for the current labeled data, from which data acquisition is requested based on uncertainty/diversity. Our contribution is debunking this myth and proposing a new objective for distillation. First, we found example forgetting, which indicates the loss of knowledge learned across iterations. Second, for this reason, the last model is no longer the best teacher-- For mitigating such forgotten knowledge, we select one of its predecessor models as a teacher, by our proposed notion of "consistency". We show that this novel distillation is distinctive in the following three aspects; First, consistency ensures to avoid forgetting labels. Second, consistency improves both uncertainty/diversity of labeled data. Lastly, consistency redeems defective labels produced by human annotators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.