Abstract

BackgroundMany treatments developed for rare diseases will have an Orphan Medicinal Product (OMP) designation, indicating that they are likely to deliver benefit in an area of high unmet need. Their approval may be based on a small or uncontrolled trial, as randomised controlled trials (RCTs) of sufficient size are often difficult to conduct, or repeat, as a result of the rarity of the condition, sparsity of patients, or for ethical reasons. Furthermore, many products are given a conditional marketing authorisation, requiring additional evidence to be collected after product launch. This is even more challenging with the advent of advanced therapeutic medicinal products, which use novel scientific approaches like gene or somatic cell therapy.IssueGiven the high unmet need associated with these products, there is pressure for Health Technology Assessment (HTA)/reimbursement bodies to enable rapid access to effective treatments. However, there is often only limited evidence available for assessment.MethodsTRUST4RD proposes an approach to identify uncertainties of most concern for decision-makers by developing an iterative and informed dialogue amongst stakeholders (including manufacturers, clinicians, patients, regulatory- and HTA agencies and payers), so that potential approaches to resolution can be discussed. As evidence is generated, uncertainties are reviewed and prioritised, and evidence-generation plans revised or clarified accordingly. The aim is to develop – both pre- and post HTA submission – a better understanding of evidence requirements versus evidence-generation trade-offs as an evidence base grows and the potential value of a product becomes clearer.ConclusionTRUST4RD presents guidance on defining uncertainties and evidence gaps in the assessment of value and value for money of specialised treatments for rare diseases. It also provides guidance on the potential of Real World Evidence (RWE) to help address such uncertainties, including the typology of evidence uncertainties, the importance of different uncertainties and the data sources available to address them before and after HTA submission. In making use of the guidance, authorisation and reimbursement discussions on such treatments can be embedded in an evidence-rich context, thereby ensuring value to all parties, particularly to patients.

Highlights

  • Many of the treatments developed for rare diseases will have an Orphan Medicinal Product (OMP) designation indicating that they are likely to deliver benefit in an area of high unmet need

  • This situation has become even more challenging with the advent of advanced therapeutic medicinal products, which use novel scientific approaches like gene therapy, somatic cell therapy or tissue engineered products administered to human beings with a view to regenerating, repairing or replacing a human tissue [1]

  • Typology and prioritisation of evidence gaps We propose a new taxonomy of evidence gaps whereby we distinguish four main types of uncertainties that are common at the time of access decisions for treatments developed for complex or rare diseases: uncertainties related to the size and characteristics of the population; uncertainties related to the natural history of the disease and its current management; uncertainties related to the new treatment; and uncertainties related to the health ecosystem

Read more

Summary

Introduction

Many treatments developed for rare diseases will have an Orphan Medicinal Product (OMP) designation, indicating that they are likely to deliver benefit in an area of high unmet need. Many products are given a conditional marketing authorisation, requiring additional evidence to be collected after product launch This is even more challenging with the advent of advanced therapeutic medicinal products, which use novel scientific approaches like gene or somatic cell therapy. This situation has become even more challenging with the advent of advanced therapeutic medicinal products, which use novel scientific approaches like gene therapy, somatic cell therapy or tissue engineered products administered to human beings with a view to regenerating, repairing or replacing a human tissue [1]. Given the high unmet need associated with these products, there is pressure for Health Technology Assessment (HTA)/reimbursement bodies to enable rapid access to effective treatments, which requires spending public money. Uncertainties may occur about the care pathway, natural history, treatments’ clinical outcomes in the longer term, added value to patients and value for money to society [2]

Objectives
Methods
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.