Abstract

We consider the robust standard quadratic optimization problem (RStQP), in which an uncertain (possibly indefinite) quadratic form is optimized over the standard simplex. Following most approaches, we model the uncertainty sets by balls, polyhedra, or spectrahedra, more generally, by ellipsoids or order intervals intersected with subcones of the copositive matrix cone. We show that the copositive relaxation gap of the RStQP equals the minimax gap under some mild assumptions on the curvature of the aforementioned uncertainty sets and present conditions under which the RStQP reduces to the standard quadratic optimization problem. These conditions also ensure that the copositive relaxation of an RStQP is exact. The theoretical findings are accompanied by the results of computational experiments for a specific application from the domain of graph clustering, more precisely, community detection in (social) networks. The results indicate that the cardinality of communities tend to increase for ellipsoidal uncertainty sets and to decrease for spectrahedral uncertainty sets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.