Abstract

A security bug in the OpenSSL library, codenamed Heartbleed, allowed attackers to read the contents of the corresponding server's memory, effectively revealing passwords, master keys, and users' session cookies. As long as the server memory contents are in the clear, it is a matter of time until the next bug/attack hands information over to attackers. In this paper, we investigate the applicability of privacy-preserving general-purpose computation, that would potentially render any information leaked indecipherable to attackers. Privacy is ensured by the use of homomorphically-encrypted memory contents. To this end, we explore the boundaries of general-purpose computation constrained for user data privacy. Specifically, we explore the minimum amount of information required for general purpose computation, which typically requires control flow and branches, and to what extent such information can be kept private from threats that have theoretically unlimited resources, including access to the internals of a target system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.