Abstract

From diagnosis to patient scheduling, AI is increasingly being considered across different clinical applications. Despite increasingly powerful clinical AI, uptake into actual clinical workflows remains limited. One of the major challenges is developing appropriate trust with clinicians. In this paper, we investigate trust in clinical AI in a wider perspective beyond user interactions with the AI. We offer several points in the clinical AI development, usage, and monitoring process that can have a significant impact on trust. We argue that the calibration of trust in AI should go beyond explainable AI and focus on the entire process of clinical AI deployment. We illustrate our argument with case studies from practitioners implementing clinical AI in practice to show how trust can be affected by different stages in the deployment cycle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.