Abstract

A prescriptive simulation model of a process operator’s decision making assisted with an artificial intelligence (AI) algorithm in a technical system control loop is proposed. Situations fraught with a catastrophic threat that may cause unacceptable damage were analyzed. The operators’ decision making was interpreted in terms of a subjectively admissible probability of disaster and subjectively necessary reliability of its assessment, which reflect the individual psychological aspect of operator’s trust in AI. Four extreme decision-making strategies corresponding to different ratios between the above variables were distinguished. An experiment simulating a process facility, an AI algorithm and operator’s decision making strategy was held. It showed that depending on the properties of a controlled process (its dynamics and the hazard onset’s speed) and the AI algorithm characteristics (Type I and II error rate), each of such strategies or some intermediate strategy may prove to be more beneficial than others. The same approach is applicable to the identification and analysis of sustainability of strategies applied in real-life operating conditions, as well as to the development of a computer simulator to train operators to control hazardous technological processes using AI-generated advice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call