Abstract

Trust is the foundation of successful human collaboration. This has also been found to be true for human-robot collaboration, where trust has also influence on over- and under-reliance issues. Correspondingly, the study of trust in robots is usually concerned with the detection of the current level of the human collaborator trust, aiming at keeping it within certain limits to avoid undesired consequences, which is known as trust calibration. However, while there is intensive research on human-robot trust, there is a lack of knowledge about the factors that affect it in synchronous and co-located teamwork. Particularly, there is hardly any knowledge about how these factors impact the dynamics of trust during the collaboration. These factors along with trust evolvement characteristics are prerequisites for a computational model that allows robots to adapt their behavior dynamically based on the current human trust level, which in turn is needed to enable a dynamic and spontaneous cooperation. To address this, we conducted a two-phase lab experiment in a mixed-reality environment, in which thirty-two participants collaborated with a virtual CoBot on disassembling traction batteries in a recycling context. In the first phase, we explored the (dynamics of) relevant trust factors during physical human-robot collaboration. In the second phase, we investigated the impact of robot’s reliability and feedback on human trust in robots. Results manifest stronger trust dynamics while dissipating than while accumulating and highlight different relevant factors as more interactions occur. Besides, the factors that show relevance as trust accumulates differ from those appear as trust dissipates. We detected four factors while trust accumulates (perceived reliability, perceived dependability, perceived predictability, and faith) which do not appear while it dissipates. This points to an interesting conclusion that depending on the stage of the collaboration and the direction of trust evolvement, different factors might shape trust. Further, the robot’s feedback accuracy has a conditional effect on trust depending on the robot’s reliability level. It preserves human trust when a failure is expected but does not affect it when the robot works reliably. This provides a hint to designers on when assurances are necessary and when they are redundant.

Highlights

  • The exponential growth of machine’s and robot’s intelligence made it possible for robots and autonomous systems to work physically alongside humans, interacting and collaborating with them and supporting them in many domains

  • In addition to the trust dynamic development, we explored the potential effect of providing feedback by the robot on human trust and whether this can be used to preserve human trust and calibrate it when needed during the collaboration

  • Our results contribute to existing the models put forward about these assurances, e.g., the trust cycle of Israelsen and Ahmed (2019), as our results shows that those assurances have a different impact on the level of human trust depending on other factors which might sometimes dominate over assurances

Read more

Summary

Introduction

The exponential growth of machine’s and robot’s intelligence made it possible for robots and autonomous systems to work physically alongside humans, interacting and collaborating with them and supporting them in many domains This dramatic advent of technology opens up many opportunities to support human work and to create new forms of technology-supported collaborative work. It shifts the robots and other intelligent system’s roles from being perceived and used as tools into being perceived as teammates (Groom and Nass, 2007) that can augment the abilities of humans and allow for hybrid team formation This new kind of teamwork has the potential to collaboratively achieve more than any single entity of its members can achieve on its own. Trust is of major importance in situations that include these two attributes

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call