Abstract

The recently emerged compressive sensing (CS) framework aims to acquire signals at reduced sample rates compared to the classical Shannon-Nyquist rate. To date, the CS theory has assumed primarily real-valued measurements; it has recently been demonstrated that accurate and stable signal acquisition is still possible even when each measurement is quantized to just a single bit. This property enables the design of simplified CS acquisition hardware based around a simple sign comparator rather than a more complex analog-to-digital converter; moreover, it ensures robustness to gross nonlinearities applied to the measurements. In this paper we introduce a new algorithm - restricted-step shrinkage (RSS) - to recover sparse signals from 1-bit CS measurements. In contrast to previous algorithms for 1-bit CS, RSS has provable convergence guarantees, is about an order of magnitude faster, and achieves higher average recovery signal-to-noise ratio. RSS is similar in spirit to trust-region methods for nonconvex optimization on the unit sphere, which are relatively unexplored in signal processing and hence of independent interest.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call