Abstract
The wireless and dynamic nature of mobile ad hoc networks (MANET) render them more vulnerable to security attacks. However, providing a security mechanism implicitly has been a major challenge in such an ad-hoc environment. Certificate management plays an important role in securing an ad-hoc network. Certificate assignment, verification, and revocation complexity associated with the Public Key Infrastructure (PKI) framework is significantly large. Smaller the size of the network lesser will be the certificate management complexity. However, smaller the size, large will be the overall infrastructural cost, and also larger will be the overall redundant certificates due to multiple certificate assignment at the boundary regions, that in turn affects the prompt and accurate certificate revocation. By taking these conflicting requirements into consideration, we propose the trust-based hexagonal clustering for an efficient certificate management (THCM) scheme, to bear an absolutely protected MANET Disparate to the existing clustering techniques, we present a hexagonal geographic clustering model with Voronoi technique where trust is accomplished. In particular, to compete against attackers, we initiate a certificate management strategy in which certificate assignment, verification, and revocation are carried out efficiently. The performance of THCM is evaluated by both simulation and empirical analysis in terms of effectiveness of revocation scheme (with respect to revocation rate and time), security, and communication cost. Besides, we conduct a mathematical analysis of measuring the parameters obtained from the two platforms in multiple times. Relevant results demonstrate that our design is efficient to guarantee a secured mobile ad hoc network.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.