Abstract
This paper presents a frequency domain impedance-signature-based technique for health monitoring of an assembled truss structure. Unlike conventional modal analysis approaches, the technique uses piezoceramic (PZT) elements as integrated sensor-actuators for acquisition of signature pattern of the truss. The concept of the localization of sensing/actuation area for damage detection of an assembled structure is presented for the first time. Through a PZT patch bonded to a truss node and the measurement of its electric admittance, which is coupled with the mechanical impedance of the truss, the signature pattern of a truss is monitored. The admittance of a truss in question is compared with that of the original healthy truss. Statistic algorithm is then applied to extract a damage index of the truss based on the signature pattern difference. Experimental proof that over a selected band, the detection range of a bonded PZT sensor on a truss is highly constrained to its immediate neighborhood is presented. This characteristic allows accurate determination of the damage location in a complex real-world structure with a minimum mathematical modeling and numerical computation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Intelligent Material Systems and Structures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.