Abstract

The objective of this investigation was to identify demands from core muscles that corresponded with trunk movement compensations during bilateral step ambulation in people with unilateral transtibial amputation (TTA). Trunk rotational angular momentum (RAM) was measured using motion capture and bilateral surface EMG was measured from four bilateral core muscles during step ascent and descent tasks in people with TTA and healthy controls. During step ascent, the TTA group generated larger mediolateral (P = 0.01) and axial (P = 0.01) trunk RAM toward the leading limb when stepping onto the intact limb than the control group, which corresponded with high demand from the bilateral erector spinae and oblique muscles. During step descent, the TTA group generated larger trunk RAM in the sagittal (P < 0.01), frontal (P < 0.01), and transverse planes (P = 0.01) than the control group, which was an effect of falling onto the intact limb. To maintain balance and arrest trunk RAM, core muscle demand was larger throughout the loading period of step descent in the TTA group. However, asymmetric trunk movement compensations did not correspond to asymmetric core muscle demand during either task, indicating a difference in motor control compensations dependent on the leading limb.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call