Abstract

The goal of this paper was to determine if trunk antagonist activation is associated with impaired neuromuscular performance. To test this theory, we used two methods to impair neuromuscular control: strenuous exertions and fatigue. Force variability (standard deviation of force signal) was assessed for graded isometric trunk exertions (10, 20, 40, 60, 80% of max) in flexion and extension, and at the start and end of a trunk extensor fatiguing trial. Normalized EMG signals for five trunk muscle pairs (RA rectus abdominis, EO external oblique, IO internal oblique, TE thoracic erector spinae, and LE lumbar erector spinae) were collected for each graded exertion, and at the start and end of a trunk extensor fatiguing trial. Force variability increased for more strenuous exertions in both flexion (P < 0.001) and extension (P < 0.001), and after extensor fatigue (P < 0.012). In the flexion direction, both antagonist muscles (TE and LE) increased activation for more strenuous exertions (P < 0.001). In the extension direction, all antagonist muscles except RA increased activation for more strenuous exertions (P < 0.05) and following fatigue (P < 0.01). These data demonstrate a strong relationship between force variability and antagonistic muscle activation, irrespective of where this variability comes from. Such antagonistic co-activation increases trunk stiffness with the possible objective of limiting kinematic disturbances due to greater force variability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.