Abstract

Termination and deletion mutations were introduced near the C-terminal end of the D2 protein in the cyanobacterium Synechocystis sp. PCC 6803 in order to determine the role of the large hydrophilic C-terminal domain of D2 in the function and stability of photosystem II (PS II). The loss of 57 residues from the C-terminal end of D2 (most of the hydrophilic tail) resulted in the loss of D2 and PS II reaction centers from thylakoids. Truncation of 16, 15, 14, or 13 amino acid residues from the C-terminus of D2 resulted in a virtual disappearance of oxygen evolution, a loss of photoautotrophic growth, and a decrease in the number of PS II centers in thylakoids. The loss of 11 C-terminal amino acid residues led to a photoautotrophic mutant that grew at one-half the rate of the wild type under photoautotrophic conditions and that showed a progressive loss of oxygen evolution at high light intensity. Truncation of 9 residues from D2 led to a virtual loss of CP43, presumably because of interference of the mutation with the overlapping ribosome-binding site for psbC translation. To delete smaller portions of D2 and yet not interfere with psbC expression, various deletions were made between the tenth and twentieth amino acid residues from the C-terminal end of D2, resulting in the loss of 8, 7, 4, 3, and 2 residues.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call