Abstract

Cardiac CaV1.2 channels play a critical role in cardiac function. It has been proposed that the carboxyl-terminal intracellular tail of the CaV1.2 channel is the target of Ca(2+)-dependent and Ca(2+)-independent regulation of the channel. Recent studies on C-terminal truncated forms of the CaV1.2 channel reported neonatal death, reduced CaV1.2 current, and failure of β-adrenergic stimulation of these channels in ventricular cardiomyocytes (CMs). Here, we used atrial CMs at embryonic day 18.5 that expressed a C-terminal truncated form of the CaV1.2 channel (Stop/Stop). Surprisingly, the atrial CMs showed robust L-type Ca(2+) currents which could be stimulated by forskolin, an activator of adenylyl cyclase. These currents exhibited a left-ward shift in the voltage-dependent activation curve and a reduced sensitivity to the Ca(2+) channel blocker isradipine as compared to currents in wild-type atrial CMs. RT-PCR analysis revealed normal levels of mRNA for the CaV1.2 channel but a twofold increase in the level of mRNA for the CaV1.3 channel in the Stop/Stop atrium as compared to wild-type atrium. A Western blot analysis indicated an increase of CaV1.3 protein in the Stop/Stop atrium. We suggest that, in contrast to Stop/Stop ventricular CMs, Stop/Stop atrial CMs can compensate the functional loss of the truncated CaV1.2 channel with an upregulation of the CaV1.3 channel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call