Abstract

Modified vaccinia virus Ankara (MVA) is a candidate vaccine vector that is severely attenuated due to mutations acquired during several hundred rounds of serial passage in vitro. A previous study used marker rescue to produce a set of MVA recombinants with improved replication on mammalian cells. Here, we extended the characterization of these rescued MVA strains and identified vaccinia virus (VACV) gene F5L as a determinant of plaque morphology but not replication in vitro. F5 joins a growing group of VACV proteins that influence plaque formation more strongly than virus replication and which are disrupted in MVA. These defective genes in MVA confound the interpretation of marker rescue experiments designed to map mutations responsible for the attenuation of this important VACV strain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call