Abstract

Nitric oxide is thought to have a role in the pathogenesis of achalasia. We performed a genetic analysis of 2 siblings with infant-onset achalasia. Exome analysis revealed that they were homozygous for a premature stop codon in the gene encoding nitric oxide synthase 1. Kinetic analyses and molecular modeling showed that the truncated protein product has defects in folding, nitric oxide production, and binding of cofactors. Heller myotomy had no effect in these patients, but sildenafil therapy increased their ability to drink. The finding recapitulates the previously reported phenotype of nitric oxide synthase 1-deficient mice, which have achalasia. Nitric oxide signaling appears to be involved in the pathogenesis of achalasia in humans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.