Abstract

The mechanisms underlying developmental myelination have therapeutic potential following CNS injury and degeneration. We report that transplanted central glial (CG)-4 cells had a diminished myelinating capacity in myelin-deficient (md) rats when cells express a mutated form of Tau (Tau [688]), which binds Fyn but not the microtubules. In the brain of the md rats, Tau [688]-transfected CG-4 cells displayed a decrease in cellular process outgrowth and myelination; in the spinal cord the extent of myelination rostral and caudal to the injection site was decreased. In contrast, control Tau [605]-transfected CG-4 cells formed long cellular processes and substantial areas of myelin both in the brain and spinal cord. In culture, Tau [688]-transfected CG-4 cells displayed a decrease in cellular process outgrowth, and Fyn localized largely in the cell body, not the processes. Thus, Tau in oligodendrocytes plays a key role in myelination, and a functional Tau-Fyn interaction might have therapeutic potential during demyelination and myelin repair following CNS injury and degeneration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.