Abstract
SummaryThis work is concerned with the numerical solution of large‐scale linear matrix equations . The most straightforward approach computes from the solution of an mn × mn linear system, typically limiting the feasible values of m,n to a few hundreds at most. Our new approach exploits the fact that X can often be well approximated by a low‐rank matrix. It combines greedy low‐rank techniques with Galerkin projection and preconditioned gradients. In turn, only linear systems of size m × m and n × n need to be solved. Moreover, these linear systems inherit the sparsity of the coefficient matrices, which allows to address linear matrix equations as large as m = n = O(105). Numerical experiments demonstrate that the proposed methods perform well for generalized Lyapunov equations. Even for the case of standard Lyapunov equations, our methods can be advantageous, as we do not need to assume that C has low rank. Copyright © 2015 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.