Abstract

Muscle stiffness is a major clinical feature in Duchenne muscular dystrophy (DMD). DMD is the most common lethal inherited muscle-wasting disease in boys, and it is caused by the lack of the dystrophin protein. We recently showed that the extensor digitorum longus (EDL) muscle of mdx mice (a DMD mouse model) exhibits disease-associated muscle stiffness. Truncated micro- and mini-dystrophins are the leading candidates for DMD gene therapy. Unfortunately, it has never been clear whether these truncated genes can mitigate muscle stiffness. To address this question, we examined the passive properties of the EDL muscle in transgenic mdx mice that expressed a representative mini- or micro-gene (ΔH2-R15, ΔR2-15/ΔR18-23/ΔC, or ΔR4-23/ΔC). The passive properties were measured at the ages of 6 and 20 mo and compared with those of age-matched wild-type and mdx mice. Despite significant truncation of the gene, surprisingly, the elastic and viscous properties were completely restored to the wild-type level in every transgenic strain we examined. Our results demonstrated for the first time that truncated dystrophin genes may effectively treat muscle stiffness in DMD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.