Abstract
We describe a solid-state NMR concept for the estimation of individual spin–spin couplings in strongly-coupled homonuclear spin systems. A radiofrequency pulse sequence, synchronised with the magic-angle sample rotation recouples zero-quantum dipolar interactions as well as a frequency-dispersing interaction such as the chemical shift anisotropy. The combination of these two recoupled interactions causes the spin system to behave in an approximately weakly-coupled fashion. Individual spin–spin couplings may then be disentangled by using frequency-selective radiofrequency pulses. Theoretical results and numerical simulations are compared with experimental data for the 13C nuclei in [ 2H 7, 13C 3, 15N]- l-alanine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.