Abstract

This paper deals with the optimal energy management control of series hybrid electric vehicles (HEVs) by which their fuel consumption is minimized. Based on the modeling of the essential dynamics of a series HEV and its powertrain, closed-form solutions of the optimal energy source power split are formulated. These solutions yield a set of simple heuristic control rules, by which a novel rule-based control strategy, the truncated battery power following strategy (TBFS), is developed for optimally allocating the hybrid energy sources to satisfy the demanded propulsion power. Numerical examples show that the TBFS is able to reproduce the globally optimal solutions found by dynamic programming (DP), but with significantly reduced computation effort, as the TBFS only requires one-dimensional parameter tuning, rather than solving an optimization problem. The results also indicate its benchmark potential for high-fidelity HEV models, where DP is no longer applicable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.