Abstract

Learning with noisy label is a classic problem that has been extensively studied for image tasks, but much less for video in the literature. A straightforward migration from images to videos without considering temporal semantics and computational cost is not a sound choice. In this paper, we propose two new strategies for video analysis with noisy labels: 1) a lightweight channel selection method dubbed as Channel Truncation for feature-based label noise detection. This method selects the most discriminative channels to split clean and noisy instances in each category. 2) A novel contrastive strategy dubbed as Noise Contrastive Learning, which constructs the relationship between clean and noisy instances to regularize model training. Experiments on three well-known benchmark datasets for video classification show that our proposed truNcatE-split-contrAsT (NEAT) significantly outperforms the existing baselines. By reducing the dimension to 10% of it, our method achieves over 0.4 noise detection F1-score and 5% classification accuracy improvement on Mini-Kinetics dataset under severe noise (symmetric-80%). Thanks to Noise Contrastive Learning, the average classification accuracy improvement on Mini-Kinetics and Sth-Sth-V1 is over 1.6%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.