Abstract
We describe a procedure for constructing initial data for boosted black holes in the moving-punctures approach to numerical relativity that endows the initial time slice from the outset with trumpet geometry within the black hole interiors. We then demonstrate the procedure in numerical simulations using an evolution code from the Einstein Toolkit that employs 1+log slicing. The Lorentz boost of a single black hole can be precisely specified and multiple, widely separated black holes can be treated approximately by superposition of single hole data. There is room within the scheme for later improvement to re-solve (iterate) the constraint equations in the multiple black hole case. The approach is shown to yield an initial trumpet slice for one black hole that is close to, and rapidly settles to, a stationary trumpet geometry. Initial data in this new approach is shown to contain initial transient (or "junk") radiation that is suppressed by as much as two orders of magnitude relative to that in comparable Bowen-York initial data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.