Abstract
The ADC is a well-established parameter for clinical diagnostic applications, but lacks reproducibility because it is also influenced by the choice diffusion weighting level. A framework is evaluated that is based on multi-b measurement over a wider range of diffusion-weighting levels and higher order tissue diffusion modeling with retrospective, fully reproducible ADC calculation. Averaging effect from curve fitting for various model functions at 20 linearly spaced b-values was determined by means of simulations and theoretical calculations. Simulation and patient multi-b image data were used to compare the new approach for diffusion-weighted image and ADC map reconstruction with and without Rician bias correction to an active clinical trial protocol probing three non-zero b-values. Averaging effect at a certain b-value varies for model function and maximum b-value used. Images and ADC maps from the novel procedure are on-par with the clinical protocol. Higher order modeling and Rician bias correction is feasible, but comes at the cost of longer computation times. Application of the new framework makes higher order modeling more feasible in a clinical setting while still providing patient images and reproducible ADC maps of adequate quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.